Nitrobenzylthioinosine mimics adenosine to attenuate the epileptiform discharge of hippocampal neurons from epileptic rats
نویسندگان
چکیده
Nitrobenzylthioinosine (NBTI), a specific inhibitor of type 1 equilibrative nucleoside transporter, could regulate the extracellular adenosine concentration and have protective roles in seizures. However, the protection mechanism of NBTI in seizures remains poorly understood. Here, the expression pattern and subcellular distribution of adenosine A1 receptor were detected by Western blot analysis and double-labeling immunofluorescence staining in Lithium Chloride-Pilocarpine induced epileptic rat model. At 24 h after pilocarpine induced rat seizures, hippocampal slices were prepared and the evoked excitatory postsynaptic currents (eEPSCs) amplitude of pyramidal neurons in hippocampus CA1 region was recorded using whole-cell patch clamp. In vivo, compared to control group, Western blotting analysis showed that the expression of adenosine A1 receptor protein was increased at 24 h and 72 h after seizure, didn't change at 0 min and 1 w, and decreased at 2 w. Double-label immunofluorescence revealed that adenosine A1 receptor was mainly expressed in the membrane and cytoplasm of neurons. In Vitro, adenosine decreased the eEPSCs amplitude of pyramidal neurons in hippocampus CA1 region, NBTI also had the same effect. Meantime, NBTI could further inhibit eEPSCs amplitude on the basis of lower concentration adenosine (50µM), and adenosine A1 receptor inhibitor DPCPX partially reversed this effect. Taken together, we confirmed that the expression of adenosine A1 receptor protein was increased in the early seizures and decreased in the late seizures. At the same time, NBTI mimics adenosine to attenuate the epileptiform discharge through adenosine A1 receptor, which might provide a novel therapeutic approach toward the control of epilepsy.
منابع مشابه
Electrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملCharacterization of spontaneous recurrent epileptiform discharges in hippocampal–entorhinal cortical slices prepared from chronic epileptic animals
Epilepsy, a common neurological disorder, is characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs). Acquired epilepsy is associated with long-term neuronal plasticity changes in the hippocampus resulting in the expression of spontaneous recurrent seizures. The purpose of this study is to evaluate and characterize endogenous epileptiform activity in hippocampal...
متن کاملNeuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus
Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of a...
متن کاملEffects of valproate sodium on extracellular signal-regulated kinase 1/2 phosphorylation following hippocampal neuronal epileptiform discharge in rats
The aim of the present study was to investigate the effects of valproate sodium (VPAS) on the phosphorylation extracellular signal-regulated kinase 1/2 (ERK1/2) following hippocampal neuronal epileptiform discharge in rat neurons. The study used neurons from female and male neonate Sprague-Dawley (SD) rats (at least 24 h old), which were rapidly decapitated. Following the successful development...
متن کامل